

Best Practices in Energy Efficiency Program Screening

NARUC Summer Meetings Energy Efficiency Cost-Effectiveness Breakfast July 23, 2012 Tim Woolf

www.synapse-energy.com | ©2011 Synapse Energy Economics Inc. All rights reserved.

- Application of the cost-effectiveness tests.
- Other program impacts.
- Balancing customer costs with public policy benefits.
- Choice of discount rate.
- Avoided costs.
- Avoided environmental compliance costs.
- Free-ridership, spillover, market transformation.
- Risk benefits of energy efficiency.
- Cost-effectiveness study period.
- Cost-effectiveness screening level.
- Best test(s) to use for screening energy efficiency.

Five Standard Cost-Effectiveness Tests

	Participant Test	RIM Test	PAC Test	TRC Test	Societal Cost Test
Energy Efficiency Program Benefits:					
Customer Bill Savings	Yes				
Avoided Generation Costs		Yes	Yes	Yes	Yes
Avoided Transmission and Distribution Costs		Yes	Yes	Yes	Yes
Avoided Cost of Environmental Compliance		Yes	Yes	Yes	Yes
Other Program Benefits (utility perspective)			Yes	Yes	Yes
Other Program Benefits (participant perspective)	Yes			Yes	Yes
Other Program Benefits (societal perspective)					Yes
Energy Efficiency Program Costs:					
Program Administrator Costs		Yes	Yes	Yes	Yes
EE Measure Cost: Rebate to Participant		Yes	Yes	Yes	Yes
EE Measure Cost: Participant Contribution	Yes			Yes	Yes
Other Program Costs	Yes		Yes	Yes	Yes
Lost Revenues to the Utility		Yes			

Application of the Cost-Effectiveness Tests

- There has been much debate about <u>which is the best test</u> for screening energy efficiency, since the beginning of EE.
- While the choice of cost-effectiveness test is important, it is also important to ensure that the tests are properly applied.
- <u>Many states are not properly applying the cost-</u> effectiveness tests today.
 - For several reasons.
- Consequently, <u>energy efficiency is being undervalued</u>, and customers are paying more than necessary for electricity and gas services.

- We use the term "other program impacts" (OPIs) to include the impacts that are not part of the costs, or the avoided costs, of the energy provided by the utility.
- Other program impacts include:
 - Non-energy benefits and non-energy costs.
 - Other fuel savings; e.g., when an electric utility efficiency program saves gas, oil or propane.
- We created this new term to be clear that other fuel savings should be treated consistently with non-energy benefits.

Examples of Other Program Impacts

- <u>Utility-Perspective OPIs</u>: reduced customer arrearages, reduced bad debt write-offs, improved customer service.
 Should be included in the PAC, TRC and Societal tests.
- <u>Participant-Perspective OPIs</u>: other fuel savings, reduced maintenance, increased productivity, improved health, increased safety. Many of these are especially important for low-income customers.
 - Should be included in the TRC and Societal tests.
- <u>Societal-Perspective OPIs</u>: reduced environmental externalities, reduced cost of providing health care.
 - Should be included in the Societal test.

Rationale for Including Other Program Impacts

- To ensure that the tests are <u>internally consistent</u>.
 - TRC test includes the participant's costs, therefore this test should include the participant's benefits.
 - Societal Cost test includes all costs and benefits to society, therefore this test should include utility, participant, & societal OPIs.
 - If the tests are not internally consistent, they become misleading, even meaningless.
- To account for important public policy implications.
 - The PAC test ensures that revenue requirements will be reduced.
 - The additional costs and benefits in the TRC test have important public policy implications:
 - This is especially, but not exclusively, true for the low-income benefits and the other fuel savings.

- Many of the participant OPIs help to justify key efficiency programs:
 - Low-income programs (maintenance, health, safety, other fuels).
 - Whole-house retrofit programs (maintenance, other fuels).
 - New construction programs (other fuels).
- These efficiency programs provide significant <u>public policy benefits</u>:
 - promoting customer equity,
 - assisting low-income customers,
 - serving a broad range of customers,
 - implementing comprehensive programs, and
 - reducing lost opportunities.

Cost of Saved Energy – Example Programs

Impacts of OPIs on Cost-Effectiveness

Current Treatment of Other Program Impacts

- While most states use the TRC test to screen efficiency programs, most of them <u>do not fully account for OPIs</u>.
- A recent ACEEE survey found that:
 - 36 states use the TRC test as the primary screen; but
 - only 12 of them quantify any type of participant OPIs; and
 - among those 12 states very few OPIs are accounted for.
- This means that many states currently conduct energy efficiency cost-effectiveness tests that are <u>inherently</u> <u>skewed against energy efficiency</u>.
- As indicated in previous slide, the impacts can be dramatic, and the impacts are primarily felt in the residential sector.
 - Results presented in this slide deck are for the actual energy efficiency programs for an actual New England utility.

Balancing Customer Costs with Public Policy

- <u>Important concern</u>: including OPIs in the TRC test may require utility customers to pay higher energy efficiency costs than otherwise;
 - Because utility customers will be paying for benefits associated with participants' other fuel savings, reduced maintenance, improved health and safety, etc.
- These higher costs can be justified by the importance of achieving <u>public policy benefits</u>, especially customer equity.
- Also, customers overall can be protected by applying the <u>PAC test at the portfolio level</u>. Example utility:
 - Spends: \$195 million on EE programs.
 - Saves: \$774 million present value revenue requirements.
 - Net Benefits: \$578 million present value revenue requirements.

TRC Versus PAC; Portfolio and Program Level

- For the PAC and TRC test, many states use the utility's weighted average cost of capital;
 - based on the notion that energy efficiency investments should be discounted with the same rate as supply-side investments.
- However, energy efficiency programs involve much less financial risk than supply-side investments.
 - Utilities typically have to raise capital to invest in supply-side resources, at the weighted average cost of capital.
 - Utilities that recover efficiency investments through system benefit charges or balancing accounts do not have to raise capital to invest in efficiency, and thus experience little financial risk.
- Therefore, states should use a low-risk discount rate when applying the TRC test or the PAC test.
 - We recommend a generic market indicator of a low-risk investment, such as the interest rate on long-term U.S. Treasury bills.

Cost-Effectiveness with Different Discount Rates

- Energy efficiency programs result in <u>several types of</u> <u>avoided costs</u>, and each of them should be included in the screening analysis and calculated correctly:
 - Avoided energy costs.
 - Avoided capacity costs.
 - Avoided transmission and distribution costs.
 - Avoided environmental compliance costs.
 - Current and anticipated EPA regulations.
 - Current and anticipated climate change regulations.
 - Price suppression effects in competitive wholesale markets.
 - Marginal line losses.

Example of Avoided Costs, by Component

Synapse Energy Economics - Best Practices in Efficiency Program Screening

Avoided Costs & the Cost of Saved Energy

- These are costs that will be incurred by utility customers; they are not environmental externalities.
 - Thus, they should be included in the PAC, TRC and Societal tests.
- Many efficiency measures will be in place for 10, 15, 20 years or more.
 - EE screening should include the environmental regulations that are expected over the next 20 years at least:
 - Current and anticipated Federal climate change requirements.
 - Current and anticipated State requirements, if more stringent.
- For states with climate change regulations:
 - Efficiency should be compared on a comparable basis with other GHG mitigation options.
 - If an efficiency program is needed to comply with climate change regulations, then it is cost-effective by definition.

Free-riders, Spillover & Market Transformation

- In order to fully capture the actual effect of energy efficiency programs, it is important to properly account for free-riders, spillover effects, and market transformation.
 - Many states account for free-riders, but give less attention to spillover and market transformation effects.
- These effects should be estimated and accounted for in a manner that is timely, consistent, and comprehensive.
- Programs that are expected to have significant market transformation impacts should be provided with greater flexibility in the screening process.

- Energy efficiency can mitigate various risks associated with resource planning, and the construction and operation of large, conventional power plants.
- These risks include fuel price risk, construction cost risk, planning risk, reliability risk, and risks associated with new regulations.
- These risk benefits should be accounted for when screening energy efficiency programs, either through system modeling or through risk adjustments to the energy efficiency benefits.

- Energy efficiency measures produce savings over the course of their useful lives.
 - Depending on the measure, the useful life can be as long as 20 years or more.
- Energy efficiency screening practices should use study periods that include the full life of the measures.
- Artificial caps on study periods or useful measure lives will skew the cost-effectiveness analysis, and result in an under-investment in energy efficiency.

Cost-Effectiveness with Different Study Periods

- Some states require screening of each <u>efficiency measure</u>, while others require screening at the <u>program</u> level, and others require screening at the <u>portfolio</u> level.
- States should not require energy efficiency screening at the measure level.
 - This is overly restrictive.
 - Some measures have benefits in terms of encouraging customers to participate in programs or adopt other efficiency measures.
- Furthermore, when energy efficiency measures are screened in the field (i.e., at the customer's premises):
 - They should be screened using the <u>Participant's Cost</u> test.
 - They should <u>not</u> be screened using the <u>TRC test</u>.

Cost-Effectiveness at Different Screening Levels

Best Test(s) to Use for Screening EE Programs

- We recommend that the <u>Societal Cost test</u> be used as the primary test to screen energy efficiency programs.
 - It includes the broadest range of costs and benefits, and
 - It provides the best measure of public policy benefits that are of great importance to regulators.
- We recommend that all states that choose not to rely on the Societal Cost test use the <u>TRC test</u> instead.
 - If the TRC test is used, it must include OPIs, to be internally consistent.
 - Also, including OPIs helps to account for public policy implications.
 Other fuel savings and low-income benefits are the priority OPIs.
- If regulators choose to not account for participant OPIs, the <u>PAC test</u> is preferable to the TRC test.

Using the PAC to Consider Utility Customer Costs

- <u>Important concern</u>: including OPIs in the TRC test may require utility customers to pay higher energy efficiency costs than otherwise.
 - Because utility customers will be paying for participants' OPIs.
- This concern can be addressed by applying the <u>PAC test at</u> the portfolio level.
- Our example actual utility (uses TRC test with many OPIs). The PAC test at the portfolio level indicates:
 - EE Costs: \$195 million per year on total portfolio of EE programs.
 - EE Benefits: \$774 million in present value revenue requirements.
 - Net Benefits: \$578 million in present value revenue requirements.
 - All utility customers on average are clearly better off, simply from a utility cost (revenue requirements) perspective.

Best Practices Versus Not-Best Practices

- We run two scenarios using our example actual utility.
 - Both scenarios use the TRC test.
- Best practices:
 - All avoided costs from slide 17 (except high GHG costs).
 - Screened at the program level.
 - OPIs currently in use in Massachusetts.
 - Risk-adjusted discount rate of 3.2 percent.
 - Study period is 30 years.
- <u>Not-Best practices;</u> all of the above, except:
 - No OPIs are included.
 - Discount rate is WACC, equal to 8.5 percent.
 - Study period is 15 years.
- Results: key residential programs become uneconomic.

Best Practices Versus Not-Best Practices

- <u>Best Practices in Energy Efficiency Program Screening</u>: How to Ensure that the Value of Energy Efficiency is Properly Accounted For.
- Prepared by <u>Synapse Energy Economics</u>. Tim Woolf, Erin Malone, Kenji Takahashi, and William Steinhurst.
- On Behalf of the National Home Performance Council.
- July 23, 2012.
- Available at:
 - www.synapse-energy.com.
 - <u>www.nhpci.org</u>.